Patch-Wise Attention Network for Monocular Depth Estimation

نویسندگان

چکیده

In computer vision, monocular depth estimation is the problem of obtaining a high-quality map from two-dimensional image. This provides information on three-dimensional scene geometry, which necessary for various applications in academia and industry, such as robotics autonomous driving. Recent studies based convolutional neural networks achieved impressive results this task. However, most previous did not consider relationships between neighboring pixels local area scene. To overcome drawbacks existing methods, we propose patch-wise attention method focusing each area. After extracting patches an input feature map, our module generates maps patch, using two modules patch along channel spatial dimensions. Subsequently, return to their initial positions merge into one feature. Our straightforward but effective. The experimental challenging datasets, KITTI NYU Depth V2, demonstrate that proposed achieves significant performance. Furthermore, outperforms other state-of-the-art methods benchmark.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Attention Guided Convolutional Neural Fields for Monocular Depth Estimation

Recent works have shown the benefit of integrating Conditional Random Fields (CRFs) models into deep architectures for improving pixel-level prediction tasks. Following this line of research, in this paper we introduce a novel approach for monocular depth estimation. Similarly to previous works, our method employs a continuous CRF to fuse multi-scale information derived from different layers of...

متن کامل

Aperture Supervision for Monocular Depth Estimation

We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera’s aperture as supervision. Prior works use a depth sensor’s outputs or images of the same scene from alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To en...

متن کامل

Depth Estimation Using Monocular and Stereo Cues

Depth estimation in computer vision and robotics is most commonly done via stereo vision (stereopsis), in which images from two cameras are used to triangulate and estimate distances. However, there are also numerous monocular visual cues— such as texture variations and gradients, defocus, color/haze, etc.—that have heretofore been little exploited in such systems. Some of these cues apply even...

متن کامل

Bayesian depth estimation from monocular natural images.

Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world t...

متن کامل

Qualitative Estimation of Depth in Monocular Vision

In this paper we propose two techniques to qualitatively estimate distance in monocular vision. Two kinds of approaches are described, the former based on texture analysis and the latter on histogram inspection. Although both the methods allow only to determine whether a point within an image is nearer or farther than another with respect to the observer, they can be usefully exploited in all t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i3.16282